Friday, April 26, 2024

DARPA autonomous combat vehicles take to the hills in off-road testing

The Defense Advanced Research Projects Agency’s (DARPA’s) Robotic Autonomy in Complex Environments with Resiliency (RACER) program has entered its next experimental phase. The program aims to produce autonomous off-road combat vehicles while traveling at speeds that keep pace with those driven by people in realistic situations.

The teams involved in the program have one experiment under their belts and will focus on even more difficult off-road landscapes at Camp Roberts, California, from September 15-27. Carnegie Mellon University, NASA’s Jet Propulsion Laboratory, and the University of Washington have each developed autonomous software stacks for the DARPA-provided robot systems tested in Experiment 1 earlier this year at Fort Irwin, California.

Experiment 1, executed March-April 2022, involved tests on six courses of combat-relevant terrain. The team completed more than 40 autonomous runs of about 2 miles (3.2 km) each and reached speeds just under 20 mph (32 km/h).

Robotic autonomy in complex environments.
Robotic autonomy in complex environments. Credit: DARPA

The terrain at Fort Irwin provided a number of obstacles, including rocks, bushes, ditches, etc., that were capable of severely damaging the robotic vehicles. The course also involved the desert environment designed to test the combat vehicles’ ability to identify, classify, and avoid obstacles at higher speeds.

The next series, Experiment 2, will require teams to go beyond the environmental features found in the desert environment to primarily test their perception algorithms on larger, steeper hills. This will also stress the robotic vehicle’s ability to maintain control, particularly going down steep slopes, on slippery surfaces, and navigating ditches over long distances than Experiment 1. The teams must also create longer-range plans amid driving through or around varied obstacles to successfully navigate courses.

“Since the first experiment, teams have been working to improve the perception of the environment and planning navigable routes through the development of new autonomy algorithm technologies,” said Stuart Young, RACER program manager in DARPA’s Tactical Technology Office. “The DARPA-provided RACER fleet vehicles being used in the program are high-performance all-terrain vehicles outfitted with world-class sensing and computational abilities, but the teams’ focus is on computational solutions as that platform encounters increasingly complex off-road terrain.”

“We are after driverless ground vehicles that can maneuver on unstructured off-road terrain at speeds that are only limited by considerations of sensor performance, mechanical constraints, and safety,” said Young. “At a minimum, the program goal is software performance that allows off-road speeds on par with a human driver.”